# NanoVNA

# **Getting Started**

- What is a VNA?
- VNAs vs Other Test Equipment
- Using the NanoVNA
- NanoVNA Options
- Software Options

### What is a VNA?

- A Vector Network Analyzer (VNA) measures both the amplitude and phase properties of the device-under-test (DUT).
- A VNA contains both a source, used to generate a known stimulus signal, and a set of receivers, used to determine changes to this stimulus caused by the DUT.
- The stimulus signal is injected into the DUT and the VNA can measure both the signal that's reflected from the input side, as well as the signal that passes through to the output side of the DUT. The VNA receivers measure the resulting signals and compare them to the known stimulus signal. The results are then processed and sent to a display.
- Reflected Signals are designated S11 (Transmit & Receive on Port 1)
- Transmitted Signals are designated S21 (Transmit from Port 1, Receive on Port 2)

### VNAs vs Antenna Analyzers

- VNAs
  - More measurement options and configurability
  - Multi-port design allows for both reflected and transmitted signal tests (S11 & S21)
  - Not designed for field use
  - NanoVNA is better value (more features for the \$)

- Antenna Analyzers
  - Intended for testing antennas and feedlines
  - Single port design with some models capable of displaying sweeps and performing S11 measurements like a VNA
  - More convenient for field use with more robust construction
  - Generally more expensive than NanoVNA

### VNAs vs Spectrum Analyzers

- VNAs
  - Contain both Source & Receiver
  - Measures response from known stimulus
  - Tend to be multichannel

- Spectrum Analyzers
  - Contain only receivers
  - Typically used to measure unknown signals
  - Tend to be single channel

### **Update Your Firmware**

- Check firmware version of your NanoVNA
  - Menu Config Version
- New units should have relatively new firmware
- Older units can be very out of date and missing useful features
- Follow procedure on https://nanovna.com/
- All required software is free

### **Update Your Firmware**

#### Old Firmware

#### New Firmware

| Ë | CH8 SHR 1.00/   | 4.74   | 1:14   | 8.000  | DISPLAY   | ₿                           | ▶M1      | 17.280MHz | 1.001       | M2 30.<br>51-                 | <mark>000MHz</mark><br>2: -12. | DISPLAY        |
|---|-----------------|--------|--------|--------|-----------|-----------------------------|----------|-----------|-------------|-------------------------------|--------------------------------|----------------|
|   |                 |        |        |        | MARKER    |                             |          |           |             |                               |                                | MARKER         |
|   |                 |        |        |        |           |                             |          |           |             |                               |                                | STIMULUS       |
|   |                 |        |        |        | STIMULUS  |                             |          |           |             |                               |                                | CALIBRATE      |
|   |                 |        |        |        | CAL       | CO<br>D<br>R<br>S<br>P<br>g | $\vdash$ |           |             |                               |                                | RECALL         |
| 0 |                 |        |        |        | RECALL    | S<br>Pa                     |          |           |             |                               |                                | MEASURE        |
|   |                 |        |        |        |           |                             |          |           |             |                               |                                | SD CARD        |
|   |                 |        |        |        | CONFIG    |                             |          |           |             |                               |                                | CONFIG         |
|   |                 |        |        |        |           |                             |          |           |             |                               |                                |                |
|   | START 144.000 0 | 00 MHz | STOP 1 | 48.000 | 8 888 MHz | -                           | STAF     | T 3.500 0 | 00 MHz BW:L | <mark>1</mark><br>4000Hz 101⊳ | -                              | 30.000 000 MHz |

### **Update Your Firmware**

#### Old Firmware

#### New Firmware

| CHB SWR 1.00/   | 4.74   | 1:14   | 8.000  | TRACE     | Ē |   | ×11  | 17.280MHz | 1.00   | 1      | <mark>M2 30.</mark><br>51-2 | <mark>000MHz</mark><br>2: -12 | TRACE                               |
|-----------------|--------|--------|--------|-----------|---|---|------|-----------|--------|--------|-----------------------------|-------------------------------|-------------------------------------|
|                 |        |        |        | FORMAT    |   | - |      |           |        |        |                             |                               | FORMAT<br>S11 (REFL)<br>FORMAT      |
|                 |        |        |        | SCALE     |   |   |      |           |        |        |                             |                               | S21 (THRU)<br>CHANNEL<br>S11 (REFL) |
|                 |        |        |        | CHANNEL   |   | 0 |      |           |        |        |                             |                               | SCALE                               |
|                 |        |        |        | TRANSFORM |   | a |      |           |        |        |                             |                               | TRANSFORM<br>IF BANDWIDTH           |
|                 |        |        |        | ( DOOK    |   |   |      |           |        |        |                             |                               | 4000Hz<br>DATA SMOOTH               |
|                 |        |        |        | ← BACK    |   |   |      |           |        |        |                             |                               | PORT-Z<br>50 <b>→</b> 50Ω           |
|                 |        |        |        |           |   |   |      |           |        |        | 1                           |                               | ← BACK                              |
| START 144.000 0 | 00 MHz | STOP 1 | 48.000 | 3 000 MHz |   | Ś | ITAR | т 3.500 о | 00 MHz | вызчоо | JOHz 101p                   | STOP                          | 30.000 000 MHz                      |

- Menu Options
  - Display
  - Marker
  - Stimulus
  - Calibrate
  - Recall



- **Stimulus** sets the frequency range
- Must be set before performing Calibration
- Use Start & Stop to set frequency range



- Frequency input screen
- Enter magnitude and then frequency unit
  - G = GHz
  - -M = MHz
  - -k = kHz
- Example:
  - 14M = 14MHz

| 7     | 8 | 9 | G  |
|-------|---|---|----|
| 4     | 5 | 6 | Μ  |
| 1     | 2 | 3 | k  |
| 0     | • | + | ×1 |
| START |   |   |    |

- Calibration is required for accurate readings
- NanoVNA must be recalibrated when the frequency range changes
- Calibrations can be saved and recalled



- Calibrate using the test standards included with your NanoVNA
- For S11 measurements only Open, Short & Load are used
- For S21
   measurements
   Isolation & Thru are
   also required



- Save and Recall your calibrations and settings to test different antennas and equipment
- Saving also retains your Trace & Display settings



- Many Display options to choose from:
  - Number of Traces
  - Scaling
  - Measurement
     Type



#### Trace

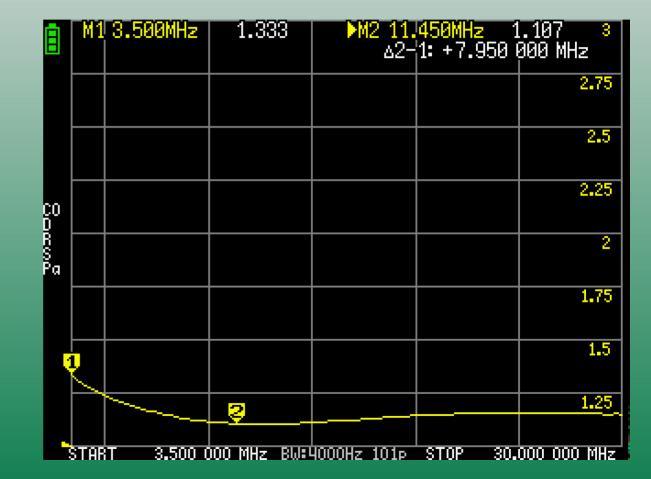
#### Format - 1

|                         | M1   | 30.000MHz | -57.9mΩ    | ▶M2 30.<br>∆2- | 000MHz<br>1: +0 H | TRACE 0        | Ē                       | ≻M1  | 17.280MHz | 1.001       | M2 30.<br>51- | <mark>000MHz</mark><br>2: -12. | LOGMAG           |
|-------------------------|------|-----------|------------|----------------|-------------------|----------------|-------------------------|------|-----------|-------------|---------------|--------------------------------|------------------|
|                         |      |           |            |                |                   | TRACE 1        |                         |      |           |             |               |                                | PHASE            |
|                         |      |           |            |                |                   |                |                         |      |           |             |               |                                | DELAY            |
|                         |      |           |            |                |                   | TRACE 2        |                         |      |           |             |               |                                | SMITH<br>Re + Im |
| C1<br>D                 |      |           |            |                |                   | TRACE 3        | CO<br>D                 |      |           |             |               |                                | 🗹 SWR            |
| C1<br>D<br>R<br>S<br>Pa |      |           |            |                |                   | STORE TRACE    | CO<br>D<br>R<br>S<br>Pa |      |           |             |               |                                | RESISTANCE       |
|                         |      |           |            |                |                   | ← BACK         |                         |      |           |             |               |                                | REACTANCE        |
|                         |      |           |            |                |                   | C BHOH         |                         |      |           |             |               |                                | IZI              |
|                         |      |           |            |                |                   |                |                         |      |           |             |               |                                | → MORE           |
|                         |      |           |            |                |                   |                |                         |      |           |             | 1             |                                | ← BACK           |
|                         | STAF | T 3.500 ( | 00 MHz BW: | 1000Hz 101p    | STOP              | 30.000 000 MHz |                         | STAR | T 3.500 Ó | 00 MHz BW≓Ú | 1000Hz 101p   | STOP                           | 30.000 000 MHz   |

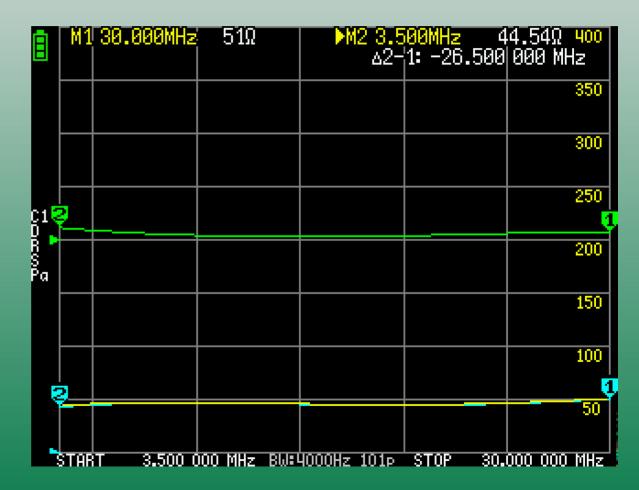
#### Format - 2

#### Format - 3

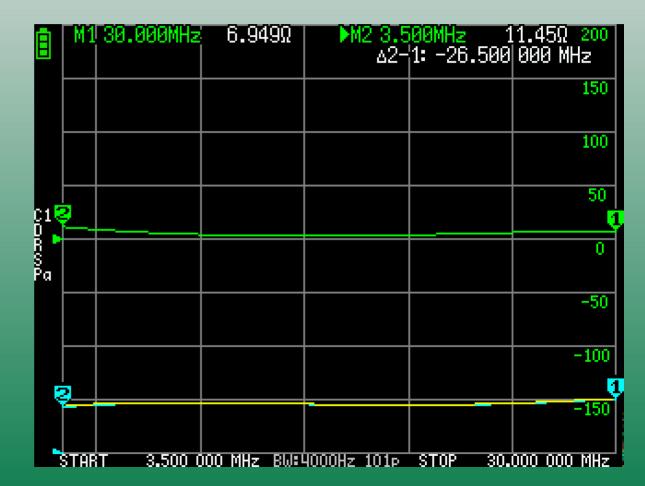
|             | ►M1  | 17.280MHz | 1.001        | <mark>M2 30.</mark><br>Δ1- | <mark>000MHz</mark><br>2: -12. | POLAR          | ₿           | ▶M1  | 17.280MHz | 1.001       | M2 30.<br>61- | <mark>000MHz</mark><br>2: -12. | Z PHASE        |
|-------------|------|-----------|--------------|----------------------------|--------------------------------|----------------|-------------|------|-----------|-------------|---------------|--------------------------------|----------------|
|             |      |           |              |                            |                                | LINEAR         |             |      |           |             |               |                                | SERIES C       |
|             |      |           |              |                            |                                | REAL           |             |      |           |             |               |                                |                |
|             |      |           |              |                            |                                | IMAG           |             |      |           |             |               |                                | SERIES L       |
| CO<br>D     |      |           |              |                            |                                | Q FACTOR       | CO<br>D     |      |           |             |               |                                | PARALLEL R     |
| CO<br>DRSSA |      |           |              |                            |                                | CONDUCTANCE    | CO<br>DRSSA |      |           |             |               |                                | PARALLEL X     |
|             |      |           |              |                            |                                | SUSCEPTANCE    |             |      |           |             |               |                                |                |
|             |      |           |              |                            |                                | IYI            |             |      |           |             |               |                                | Parallel C     |
|             |      |           |              |                            |                                | → MORE         |             |      |           |             |               |                                | PARALLEL L     |
|             |      |           |              | 1                          |                                | ← BACK         |             |      |           |             | 1             |                                | ← BACK         |
|             | STAR | T 3.500 Ó | iOO MHz BW∶ú | 1000Hž 101p                | STOP                           | 30.000 000 MHz |             | STAR | T 3.500 0 | IOO MHz BW≕ | 1000Hz 101p   | STOP                           | 30.000 000 MHz |


 Adjust the Scale and turn on the Grid Values to make it easier to read measurements




 Setting up
 Markers makes it easy to find the
 Maximum and
 Minimum points
 on the sweep




- Example SWR sweep of a 36:1 End-Fed Half-Wave matchbox connected to an 1800 Ohm resistor
- Marker #1 shows the maximum SWR & the frequency where it occurs
- Marker #2 shows the minimum SWR & frequency



- Example multi-trace sweep of a 36:1
   EFHW matchbox connected to an 1800 Ohm resistor
- Yellow = Impedance
- Cyan = Resistance
- Green = Reactance



- Same example as previous slide, but notice that the Scale and Measurement colors changed when the Green Trace is active
- Yellow = Impedance
- Cyan = Resistance
- Green = Reactance



#### S11 Measurements

- Useful for testing antennas, baluns, and impedance transformers
- Connect to Channel 0 (Port 1)
- Set S11 Format to test SWR, Impedance, etc.



- S21 Measurements
  - Useful for testing chokes and filters
  - Connect to Channel 0
     (Port 1) & Channel 1
     (Port 2)
  - Set S21 Format to test LogMag, Phase, etc.
  - May require custom testing hardware

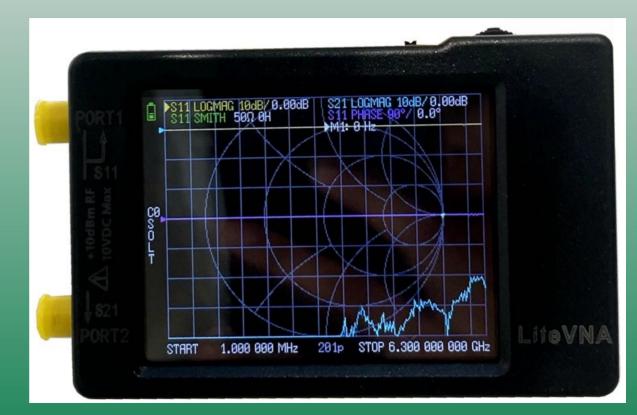


- Official NanoVNA Models
  - NanoVNA-H
  - NanoVNA-H4
  - SAA2N
  - LiteVNA
  - LiteVNA64
- Available from official dealers listed on NanoVNA website (R&L Electronics, GigaParts)

- Newer models offer more frequency range in the GHz and higher dynamic range measurements. These improvements don't matter much for the average ham.
- Many other clone models available from other sellers (Amazon, eBay) of varying quality. Do your research before buying.

- NanoVNA-H
  - SMA Connections
  - 50KHz –
    1.5GHz Range
  - 2.8" Screen
  - \$60




- NanoVNA-H4
  - SMA Connections
  - 50KHz –
    1.5GHz Range
  - 4" Screen
  - \$90



- SAA2N
  - N Connections
  - 50KHz 3GHz
     Range
  - 4" Screen
  - Metal Case
  - \$110



- LiteVNA
  - SMA Connections
  - 50KHz –
    6.3GHz Range
  - 2.8" Screen
  - \$110



- LiteVNA64
  - SMA Connections
  - 50KHz –
    6.3GHz Range
  - 4" Screen
  - \$130



# Software Options

#### NanoVNA Saver

- Available for Windows & Linux
- Integrates directly with the NanoVNA
- Can capture screenshots from some NanoVNA models

#### NanoVNA App

- Available for Windows
- Easier to use and more versatile
- Uses NanoVNA hardware but performs all measurements and calculations in software
- Can save and transfer calibrations